
Algebra

• What is common between the following?

– 1 + 1 = 2

– 2 + 3 = 5

– 6 + 7 = 13

• Answer:

– a + b = c

 What is the benefit of it?

Benefits Of Algebra

1. Readability
– Which one is easier to read?

I. The square feet of an area is the length
multiplied by the width

II. length * width = area

2. Easier calculation
– Sample question,

• We have ducks and lambs

• There is a total of 50 heads

• There is a total 150 feet

• How much ducks and how much lambs do we have?

Solution

1. Each duck has 1 head and 2 feet
2. Each lamb has 1 head and 4 feet

3. We got
I. Ducks + Lambs = 50 (heads)
II. (Ducks * 2) + (Lambs * 4) = 150 (feet)

4. Divide the second equation by 2
 (Ducks * 2) + (Lambs * 4) = 150
/2
 (Ducks) + (Lambs * 2) = 75

5. Subtract the first equation
 (Ducks) + (Lambs * 2) = 75
- Ducks + Lambs = 50
 Lambs = 50

Algebra Functions

A function in algebra is:
1. A formula
2. That returns a value
3. That can take arguments
4. The return value is always the same, if the

arguments are the same

Example:
1. Add(a,b) is a function
2. CurrentTime() is not a function
3. Void DoSomethingNoReturn is not a function

Algebra function syntax:
 area = f(length, width) = length * width

Functions In Computers
• Function vs Sub

– Databases separate between a function (that returns
a value) and stored procedures (that is like a
subprogram but doesn’t return a value)

– Also basic distinguishes between a function that
returns a value and a “sub” (subroutine or
subprogram) that doesn’t return a value

– Other imperative languages consider everything as
functions

• Same return value
– MySQL has a keyword “deterministic”
– In functional languages a variable is not changeable,

and a function always returns the same value (as in
algebra)
• A function with no arguments is in fact a constant

Boolean Algebra

• True = 1

• False = 0

• True AND True = True

• True AND False = False

• True OR False = True

• True Xor True = False

• True Xor False = True

• Not True = False

• Not False = True

Computers And Boolean Algebra

1. If and while statements

2. The hardware logic gates are based on
“Nand” and “Not” circut transistors

Computer Language history
• Machine Language

– Assembly Language
• Fortran (FORmula TRANsalator)

– Algol

» B

• C (UNIX) by K&R

• C++ [c = c + 1]

• Java

• C#

• JavaScript

• PHP

• Basic
– VB6

– VBA

– VBS

– VB.Net

Sample Memory Transistor

 “Not” (Inverter)

Chip Is On (1)

 On (1) Off (0) – We ignore this side

 “Not” (Inverter)

 “Not” (Inverter)

Chip Is Off (0)

 Off (0) On (1) – We ignore this side

 “Not” (Inverter)

Program Internal
Sections

.text .data .bss

Stack

Virtual Memory Layout

Operating
System
Reserved

.data

Break
(Heap)

.text

.bss

S
t
a
c
k

0

FFFFFFFF

How The Sections Work

 .text
.data

Instruction1
Instruction2
OpCode Operand1 Operand2
ADD 01010101 11110000

 a = 1
 b = 1
 a + b

00000001

00000001

Variable a @(01010101)

Variable b @ (11110000)

Code

Indirection
 .text

.data Instruction1
Instruction2
OpCode Operand1 Operand2
ADD 11110011 11111111

 a = 1
 b = 1
 c* = &a
 d* = &b
 c* + d*

00000001

00000001

Variable a @(01010101)

Variable b @ (11110000) Code

01010101 Variable c @ (11110011)

11110000 Variable d @ (11111111)

I
n
d
i
r
e
c
t

Example A “C” “Array”

myArray = array()
 i = 1
 myArray[i] = 0

00000001
 i @(01010101)

 myArray @ (11110000)

Code

 myArray[i] == myArray[1] == myArray + 1 @ (11110001) 00000000

Index value
(indirection)

Back To Memory

 a = 0
 p* =&a

11110001

 Whole_Memory_Array

 Pointer p @(01010101)

Code

a =Actual pointed variable = Whole_Memory_Array[p]@ (11110001) 00000000

Pointer value
(indirection)

Intro To Binary
Switch = Bit

8 Switches = 8 Bits = Byte

1 = On
0 = Off

 We can have only 0 or 1
 Is there any way to get real numbers?

Lets Take an Example From Regular
(Decimal) Numbers

• 0

• 1

• 2

• 3

• 4

• 5

• 6

• 7

• 8

• 9

• ?????

 We have only 9 numerals
 So how do we proceed?

Lets Take an Example From Regular
(Decimal) Numbers

• 0

• 1

• 2

• 3

• 4

• 5

• 6

• 7

• 8

• 9

• ?????

 The answer is combination

• 10

• 11

• 12

• …

• 20

• 21

• ….

• 30

• ….

• 99

• ?????

• 100

• 101

• ….

• 200

• …..

Back To Binary

• 0

• 1

• ???

 The answer is combination

• 10

• 11

• ?????

• 100

• 101

• 110

• 111

• ??????

• 1000

• 1001

• 1010

• 1100

• 1101

• 1110

• 1111

• ??????

Binary Compared To Decimal

• 0

• 1

• 2

• 3

• 4

• 5

• 6

• 7

• 8

• 9

• ……

• 00000000

• 00000001

• 00000010

• 00000011

• 00000100

• 00000101

• 00000110

• 00000111

• 00001000

• 00001001

• ……..

• 0

• 1

• 2

• 3

• 4

• 5

• 6

• 7

• 10

• 11

• ……

Decimal Binary Octal

Negative Numbers

• Rule 1: Negative has a 1 in front
 Ex: 100000001

• Rule 2: The 2’s complement

1. The 1’s Complement – Xor all bits
 Ex: 000000001 - (Decimal “1”)
 Xor: 111111110

2. The 2’s Complement – Add 1
 Ex: 000000001 - (Decimal “1”)
 Xor: 111111110
 Add 1: 111111110 - (Decimal “-1”)

Converting Between Smaller And Larger Types

 byte a = 1
 short b = a

Code

 00000001
0000000000000001

 Correct

 unsigned byte a = 255
 short b = a

 11111111
0000000011111111

Correct

 byte a = -1
 short b = a

 11111111
0000000011111111

Wrong

 11111111
1111111111111111 Correct

 Positive Values

 Negative Values

Identifiers Turned Into Memory
Addresses

1. The identifiers that are being turned into memory
addresses:
– Global Variables
– Functions
– Labels

2. The identifiers that are NOT being turned into memory
addresses, (are only used to measure the size to reserve):
– Custom types
– Struct
– Class names

3. The identifiers that are used as offsets:
– Array index
– Class (and struct) field (NOT function) member
– Local variables

Variables

• Size of the reserved memory is based on the type
• There might be the following types

1. Built-in type – which is just a group of bytes, based on the compiler
and/or platform

2. Custom type – which is just a series of built in types
3. Array (in C and C++) – which is just a series of the same built-in type

(but no one keeps track of the length, so it is the programmers job)
4. Pointer – system defined to hold memory addresses
5. Reference – a pointer without the possibility to access the memory

address
6. Handle – a value supplied by the operating system (like the index of an

array)
7. Typedef and Define – available in C and C++ to rename existing types

Variables are a “higher language – human
readable” name for a memory address

Labels

• There is no size associated with it

• Location
– In assembly it might be everywhere

• In fact in assembly it is generally the only way to declare a
variable, function, loop, or “else”

• In Dos batch it is the only way to declare a function

– In C and C++ it might be only in a function – but is only
recommended to break out of a nested loop

– In VB it is used for error handling “On error goto”

– In Java it might only be before a loop

Labels are a “higher language – human
readable” name for a memory address

Label Sample In Assembly
.data
 .int
 var1:
 1
 var2:
 10
.text
 .global
 start:
 mov var1 %eax
 call myfunc
 jmp myfunc
 myfunc:
 mov var2 %ebx
 add %eax %ebx
 ret

Label Sample In Java (Or C)
outerLabel:
 while(1==1)
 {
 while(2==2)
 {
 //Java syntax
 break outerLabel;

 //C syntax (not the same as
before, as it will cause the loop again)
 goto outerLabel;
 }
 }

Boolean Type

• False == 0 (all switches are of)

• True == 1 (switch is on, and also matches
Boolean algebra)

• All other numbers are also considered true (as
there are switches on)

• There are languages that require conversion
between numbers and Boolean (and other are
doing it behind the scenes))

However TWO languages are an

exception

Why Some Languages Require conversion
•Consider the following C code, all of them are perfectly valid:
 if(1==1) //true

 if(1) //true as well
 if(a) //Checks if “a” is non-zero
 if(a==b) //Compares “a” to “b”
 if(a=b) //Sets “a” to the value of “b”, and then
 //checks “a” if it is non-zero, Is this by
 //intention or typo?

•However in Java the last statement would not compile, as it is
not a Boolean operation

•For C there is some avoidance by having constants to the left, ie.
 if(20==a) Instead of if(a==20)
Because
 if(20=a) Is a syntax error
While
 if(a=20) Is perfectly valid

Implicit Conversion
• However some languages employ implicit

conversion

• JavaScript considers

– If (1) : true

– If (0) : false

– If (“”) : false

– If (“0”) : true

• Php Considers
• If (“0”) : false

• If (array()) : false

Boolean In Visual Basic

• True in VB = -1

• To see why let us see it in binary
– 1 = 00000001

– 1’s complement = 1111111110

– 2’s complement = 1111111111

• So all switches are on

But why different than all others?

To answer that we need to understand the difference
between Logical and Bitwise operators, and why do

Logical operators short circuit?

Logical vs bitwise

• Logical
– Step 1 – Check the left side for true

– Step 2 – If still no conclusion check the right side

– Step 3 – Compare both sides and give the answer

• Bitwise
– Step 1 – Translate both sides into binary

– Step 2 – Compare both sides bit per bit

– Step 3 – Provide the soltuion

Example Bitwise vs Logical

• Example 1

If 1==1 AND 2==2

 Logical And Bitwise And

Step 1: 1==1 is true 1==1 is true=00000001

Step 2: 2 ==2 is true 2==2 is true=00000001

Step 3:

 True 00000001

And True 00000001

 = True 00000001

More Examples
• Example 2
 If 1==2 AND 2==2
 Logical And Bitwise And
Step 1: 1==2 is false 1==2 is false=00000000
Step 2: return false 2==2 is true =00000001
Step 3: N/A 00000000
 AND 00000001

 00000000
• Example 3

 If 1 AND 2
Step 1: 1 is True 00000001
Step 2: 2 is True 00000010
Step 3: True 00000000

Bitwise vs Logical Operators
Operator C Basic VB.Net

(Logical)

Logical AND && N/A AndAlso

Logical OR || N/A OrElse

Logical NOT ! N/A N/A

(Bitwise)

Bitwise AND & AND AND

Bitwise OR | OR OR

Bitwise XOR ^ XOR XOR

Bitwise NOT ~ NOT NOT

Back To VB
• Since we have only a bitwise NOT we have to

make sure it works on Boolean

 NOT On 1

 1 = 00000001 = True
 NOT = 11111110 = True

NOT On -1

 -1 = 11111111 = True
 NOT = 00000000 = False

 Beware Of The Win32 API

Boolean In Bash Shell Scripting
if(true) then echo “works”; fi
works

if(false) then echo “works”; fi

if(test 1 –eq 1) then echo “works”; fi
works

if(test 1 –eq 2) then echo “works”; fi

echo test 1 –eq 1

test 1 –eq 1
echo $?
0
test 1 –eq 2
echo $?
1

true
echo #?
0
false
echo #?
1

